RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. THIRD SEMESTER EXAMINATION, DECEMBER 2011

SECOND YEAR

Date : 16/12/2011 Time : 11 am - 2 pm

a)

MICROBIOLOGY (Honours) Paper : III

Paper : III

Full Marks : 75

 $[2 \times 5 = 10]$

[Use separate Answer Books for each group]

<u>Group – A</u>

- 1. Answer the following questions :
 - a) Name a lipid molecule whose presence is biased on the outer layer of membrane. What does that indicate?
 - b) In the Messelson-Stahl experiment, which of the three modes of replication could be ruled out after one round of replication? After two rounds?
 - c) Name the subunits of *E.coli* RNA polymerase.
 - d) Why is the function of *lac* operon controlled negatively and also positively?
 - e) What is the major difference between a ribosomal protein and any factor required for the process of translation?

2. Answer <u>any three</u> questions :

- i) What do you mean by semiconservative replication?
 - ii) What can be the other modes of replication?
- iii) Describe the steps of looped rolling circle mode of replication.
- b) i) What do you mean by promoter?
 - ii) Describe the consensus sequences of a standard promoter.
 - iii) Describe the intrinsic (rho-independent) termination of transcription process in prokaryotes.

[2+3+5]

[3+2+5]

- c) i) Actinomycin D inhibits DNA-dependent RNA synthesis. This antibiotic is added to a bacterial culture in which a specific protein is monitored. Compared to a control culture, into which no antibiotic was added, translation of protein declines over a period of 20 minutes, ultil no further protein is made. Explain the results.
 - ii) When the growing *E. coli* is subjected to rapid increase in temperature a new and characteristic set of genes are expressed. Explain.
 - iii) If the non-template strand of a gene in *E.coli* had the sequence 5' TTGACA–(18 bases) TATAAT (8 bases) GCCTTCCAGTC 3', what would be the nucleotide sequence in the RNA transcript?
 - iv) How does a mutation in *Mycobacterium* makes it resistant against rifamycin used to treat tuberculosis? [3+2+2+3]
- d) i) Briefly mention the mechanism of recruitment of right kind of amino acid from cytosol by aminoacyl tRNA synthetase and its loading onto the 3⁻ end of t RNA.
 - ii) Write true or false for the following statements-
 - mRNA binds to the ribosome by its initiation codon.
 - Peptidyl transferase reaction centre is present in the large subunit.
 - ▶ IF3 causes the binding of small and large subunits together.
 - iii) Why is the initiating amino acid in the growing polypeptide chain formylated? [4+3+3]
- e) i) For the partial diploid shown in the table, predict wheather the structural genes are constitutive, permanently represend or inducible in presence of lactose (use +/- signs)

Partial diploid	Constitutive	Repressed	Inducible
$I^+O^+Z^+/F^+O^+Z^+$			
$I^+O^CZ^+ / F T O^+Z^-$			
$I^+O^+Z^+ / F'I^-O^CZ^-$			
$I^{s}O^{+}Z^{+} / F \Upsilon^{+}O^{+}Z^{+}$			
$I^{+}O^{C}Z^{-}/FI^{+}O^{+}Z^{+}$			

- ii) Why is lactose not used as inducer while experimenting with *lac* operon? Name two such inducers used for this purpose.
- iii) A genetic cross between two lac⁻ *E.coli* strains yielded a few lac⁺ cells. What would be your explanation for this result. [5+(2+1)+2]

 $[3 \times 10 = 10]$

- f) i) "Glycosides specifically ibhibits $Na^+ K^+$ ATPase". Explain.
 - ii) Na^+ is smaller in size than K^+ . Because of its smaller size, one would expect Na^+ be able to penetrate any pore which permits K^+ . However, it does not happen. Explain why?
 - iii) Explain why are the mitochondria considered as semiautonomous organelles.
 - iv) Briefly describe the histochemical identification of different parts of Golgi apparatus by specific stains. [2+3+2+3]
- 3. Write short notes on the following (<u>any two</u>) :
 - a) rho-dependent termination of transcription.
 - b) DNA polymerase III.
 - c) Leader sequence of polycistronic mRNA.
 - d) Gramicidin.

5.

<u>Group – B</u>

- 4. Answer **<u>any five</u>** questions :
 - a) Define coliform bacteria.
 - b) What do you mean by enzyme poisoning?
 - c) What do you mean by suicide inactivation?
 - d) What do you mean by the terms :
 - i) 1 International Unit (IU)
 - ii) 1 Katal of enzyme activity?
 - e) How would you measure BOD?
 - f) Name two water-borne protozoan pathogens of human.
 - a) What do you mean by the velocity of an enzyme-catalyzed reaction?
 - b) What do you mean by the term affinity of an enzyme towards a substrate?
 - c) Deduce the relationship between reaction velocity and substrate concentration of an enzymatic reaction.
 - d) What do you mean by competitive and non-competitive inhibition? Show the changes through Lineweaver-Burke plot. [2+2+3+3]

Or,

a)	What are the differences between : (answer any two)	
	i) Phosphorylase and Phosphatase	[2]
	ii) Catalase and Peroxidase	[2]
	iii) Synthase and synthatase	[2]
b)	What do you mean by E.C. 1:2:1:1	[1]
c)	Describe how Briggs and Haldane derived the equation for single substrate-enzyme reaction.	[5]

6.	a)	Discuss the sources of water pollution. Mention the principle behind the indole test.	[2+2]	
b) Disc		iscuss a few methods of controlling microbes in air. Name three airborne pathogens and mention the		
		diseases they cause in humans.	[3+3]	
		Or,		
	a)	What are the different sources of microorganisms present in air? What is bioaerosol?	[2+2]	
	b)	How would you differentiate droplet proper from droplet nuclei?	[2]	

c) Write two important procedures of differentiating faecal and non-faecal coliforms. [2+2]

80衆Q

[5×2]

 $[2.5 \times 2 = 5]$